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Abstract

The approach described in this paper aims to support multicriteria choice and ranking of actions when the input pref-
erence information acquired from the decision maker is a graded comprehensive pairwise comparison (or ranking) of ref-
erence actions. It is based on decision-rule preference model induced from a rough approximation of the graded
comprehensive preference relation among the reference actions. The set of decision rules applied to a new set of actions
provides a graded fuzzy preference relation, which can be exploited by weighted-fuzzy net flow score or lexicographic-fuzzy
net flow score procedure to obtain a final recommendation in terms of the best choice or of the ranking.
� 2007 Published by Elsevier B.V.
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1. Introduction

While decision making may sometimes be an unconscious act, it is usually followed by searching for rules
that justify people’s choices. The rules make evidence of a decision policy and can be used for both explanation
of past decisions and recommendation of future decisions. The rules are logical statements (consequence rela-
tions) relating some conditions describing a decision situation with particular decisions. Construction of such
a logical model of behavior from observation of agent’s acts is a paradigm of artificial intelligence and, in par-
ticular, of inductive learning.

The set of rules representing a decision policy of an agent constitutes its preference model. The preference
model is a necessary component of decision support systems for multicriteria choice and ranking problems.
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With respect to the basic characteristics of the preference model, two main models have been proposed in the
past:

– a preference model expressed in terms of a utility function within multiple attribute utility theory (MAUT)
[3,14];

– a preference model expressed in terms of procedures for building a preference relation within the outran-
king approach [16,19].

Both in MAUT and in the outranking approach, construction of a preference model requires that the agent
– called decision maker (DM) – gives some preference information, like substitution rates among criteria within
MAUT, or importance weights and thresholds of indifference, preference and veto within the outranking
approach.

In this paper, we consider a third approach, different from MAUT and from the outranking approach: this
is the decision rule approach [7,10], which follows the paradigm of artificial intelligence and inductive learning.
Decision rules express preferences in a natural language in terms of ‘‘if . . . , then . . .’’ statements relating con-
ditions concerning comparisons of actions on particular criteria, with conclusion being a comprehensive
preference relation between these actions. For example, in a decision related to buying a house, a rule can
say ‘‘if house x is preferred to house y with respect to proximity to working place, and strongly preferred with
respect to the price, then x is comprehensively preferred to y’’. According to the paradigm of artificial intel-
ligence and inductive learning, these decision rules are induced from preference information supplied by the
DM in terms of some decision examples. It is rather certain that giving decision examples is much more natural
for the DM than giving, more or less directly, the technical parameters of preference models mentioned above.
Therefore, our decision model has two main advantages over the classical models: (i) the decision rules are
intelligible and speak the language of the DM, (ii) the DM gives a preference information in the very natural
terms of a set of exemplary decisions.

In practice, however, decision examples are often inconsistent due to hesitation of the DM, unstable char-
acter of his/her preferences and incomplete determination of the family of criteria. The inconsistencies violate
the basic principle of multicriteria comparison, called dominance (or Pareto) principle, which has different for-
mulation for multicriteria sorting problems, and for multicriteria choice and ranking problems.

In case of multicriteria sorting, which takes into account absolute evaluation of actions on particular cri-
teria in decisions about their assignment to preference-ordered classes, the dominance principle says that if for
two actions, x and y, action x has evaluations on all considered criteria not worse than action y, then x should
be, comprehensively, weakly preferred to y.

In case of multicriteria choice and ranking, which takes into account pairwise comparisons of actions on
particular criteria, in order to decide which ones are the best or how they rank from the best to the worst,
the dominance principle says that if for two pairs of actions, (x,y) and (w,z), action x is preferred to action
y at least as much as action w is preferred to action z on all considered criteria, then pair (x,y) should be, com-
prehensively, weakly preferred to pair (w,z), i.e. the comprehensive preference of x over y should not be less
intensive than that of w over z.

The inconsistencies in the set of decision examples cannot be considered as simple error or noise – they can
convey important information that should be taken into account in the construction of the DM’s preference
model. Rather than correct or ignore these inconsistencies, we propose to take them into account in the pref-
erence model construction using the rough set concept [15,17].

The original definition of rough sets, involving a relation of indiscernibility to identify granules of objects
used to build lower and upper approximations, was not able, however, to handle the inconsistencies with
respect to the dominance principle. To overcome this limitation, the original version of rough set theory
has been extended in two ways: (i) substituting the classical indiscernibility relation with respect to attributes
by a dominance relation with respect to criteria, and (ii), substituting the data table of actions described by
attributes, by a pairwise comparison table, where each row corresponds to a pair of actions described by bin-
ary relations on particular criteria, which permits approximation of a comprehensive preference relation in
multicriteria choice and ranking problems. The extended rough set approach is called DRSA, which means
dominance-based rough set approach [4–10,18].
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We consider a finite set A ¼ fx; y; z; . . .g of actions evaluated by a family of criteria G ¼ fg1; . . . ; gng, where
for i ¼ 1; . . . ; n; gi : A! R such that, for all x,y 2 A, gi(x) P gi(y) means that ‘‘x is at least as good as y with
respect to criterion gi’’. The preference information provided by the DM has the form of pairwise comparisons
of some actions selected by the DM from set A: these actions, called reference actions, constitute a reference set
A 0 � A. They should be relatively well known to the DM and such that, for some pairs of reference actions
(x,y) 2 A 0 · A 0, the DM is able to say how intensively x is preferred to y; the set of pairs compared in these
terms is denoted by B � A 0 · A 0. It is worth stressing that the choice of reference actions and their pairwise
comparisons are two acts of the DM in which elicitation of preference information takes place. All we should
do after, is to construct decision rules (preference model) compatible with this preference information – they
represent the decision policy of the DM exhibited on the set of reference actions. These rules can be easily
interpreted by the DM and, when approved, they can be applied to the complete set of actions in view of solv-
ing the choice or ranking problem. If a rule is non-acceptable for the DM, then it can be confronted with the
pairwise comparisons supporting it, and, in consequence, the pairwise comparisons could be changed or a new
pairwise comparison could be added by the DM, preventing induction of this non acceptable rule. This inter-
active process ends when the DM gets convinced that the preference model built from his/her preference infor-
mation, as well as the consequence of its application on the whole set A, are concordant with his/her
preferences.

Within this context, the preference information is represented as a pairwise comparison table (PCT) includ-
ing pairs B � A 0 · A 0. In addition to evaluation on particular criteria, each pair (x,y) 2 B is characterized by a
comprehensive preference relation which is graded (true or false to some grade). Using the rough set approach
to the analysis of the PCT, we obtain a rough approximation of the graded preference relation by a dominance
relation defined with respect to considered criteria. More precisely, the rough approximation concerns unions
of graded preference relations, called upward and downward cumulated preference relations. The rough
approximation is defined for a given level of consistency, changing from 1 (perfect separation of certain
and doubtful pairs) to 0 (no separation of certain and doubtful pairs). The rough approximations are used
to induce ‘‘if. . . , then. . .’’ decision rules. The decision rules approved by the DM constitute a preference model
of the DM. In order to recommend a best choice or a ranking of a new set of actions M � A, the decision rules
are applied on set M2 = M · M of pairs of these actions, inducing a specific preference structure on M.

We propose a new exploitation of this preference structure. It tends to answer the following questions:

• how to interpret the matching of one or several decision rules to a pair of actions (u,v) 2M2 in terms of
conclusions: u is preferred to v to some grade, or v is preferred to u to some grade?

• given a pair of actions (u,v) 2M2, what is the credibility of a conclusion that u is preferred to v to some
grade, or v is preferred to u to some grade?

• finally, having the above information on all the pairs of actions from M2, how one can build a final ranking?

Comparing to previous applications of dominance-based rough set approach to choice and ranking, this
paper makes the following original contributions:

(1) we consider a comprehensive graded preference relation: previous proposals [13,18] concentrated on two
possible grades: ‘‘outranking’’ (when one action is at least as good as the other) and ‘‘non-outranking’’
(when one action is not at least as good as the other);

(2) the decision rules have a probabilistic character due to induction based on variable consistency model of
DRSA [11,18];

(3) a credibility degree is assigned to the grade of preference for each pair of actions (u,v) 2M2, taking into
account the confidence level of decision rules matching the corresponding pair;

(4) the considered preference structure on M is richer than the four-valued preference structure previously
considered in dominance-based rough set approach to choice and ranking: in fact, it is a graded fuzzy
preference relation of level 2; it is graded because of different grades of preference, but it is also fuzzy
because of credibility degree assigned to each grade of preference;

(5) to obtain a recommendation, we propose a weighted-fuzzy net flow score or, alternatively, a lexico-
graphic-fuzzy net flow score exploitation procedure of the considered preference structure on M.
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Moreover, in comparison to similar considerations presented in [4], in this paper, we revise and simplify the
exploitation procedures. In Section 2, we define the pairwise comparison table from the decision examples
given by the DM. In Section 3, we briefly sketch the variable consistency dominance-based rough set approach
to the analysis of PCT, for both cardinal and ordinal scales of criteria. Section 4 is devoted to induction of
decision rules and Section 5 characterizes the recommended procedures for exploitation of a graded fuzzy
preference structure resulting from application of decision rules on a new set of actions. Section 6 presents
an illustrative example. The last section groups conclusions.
2. Pairwise comparison table (PCT) built of decision examples

For a representative subset of reference actions A 0 � A, the DM is asked to express his/her comprehensive
preferences by pairwise comparisons. In practice, he/she may accept to compare the pairs of a subset
B � A 0 · A 0. For each pair (x,y) 2 B, the comprehensive preference relation � assumes different grades h of
intensity, hence denoted by �h. Let H � ½�1; 1� be the finite set of all admitted values of h, and H+ (resp.
H�) the subset of strictly positive (resp., strictly negative) values of h. It is assumed that h 2 H+ iff �h 2 H�.
Finally, H � ðH� [ f0g [ HþÞ. In the following, a = min{h 2 H} and x = max{h 2 H}, with a = �x.

For each pair (x,y) 2 A 0 · A 0, the DM is asked to select one of the four possibilities:

(1) action x is comprehensively preferred to action y in grade h, i.e. x �h y, h 2 H+,
(2) action x is comprehensively not preferred to action y in grade h, i.e. x �h y, h 2 H�,
(3) action x is comprehensively indifferent to action y, i.e. x �0 y,
(4) DM refuses to compare action x to action y.

Although the intensity grades are numerically valued, they may be interpreted in terms of linguistic ordinal
qualifiers, for example: ‘‘very weak preference’’, ‘‘weak preference’’, ‘‘strict preference’’, ‘‘strong preference’’ for
h = 0.2,0.3, 0.7,1.0, respectively. A similar interpretation holds for negative values of h. Let us also note that
x �h y does not necessarily imply y ��h x and x �0 y does not necessarily imply y �0 x. Moreover, relation
x �0 y is interpreted as indifference, rather than indetermination or incomparability, because it corresponds
to situation of consciously expressed negligible preference of x over y. This expression of intensity of prefer-
ence is assumed to be equally certain for all grades. Indetermination or incomparability would take place if the
DM would abstain of any expression of preference with respect to the pair (x,y), that is, if zero intensity would
correspond to no certainty at all.

An m · (n + 1) pairwise comparison table SPCT is then created on the base of this information. Its first n

columns correspond to criteria from set G. The last, (n + 1)th column of SPCT, represents the comprehensive
binary relations �h with h 2 H. The m rows represent pairs from B. If the DM refused to compare two ref-
erence actions, then such a pair does not appear in SPCT.

In the following, we will distinguish two kinds of criteria – cardinal and ordinal ones [5]. In consequence of
this distinction, for each pair of actions in SPCT we have either a difference of evaluations on cardinal criteria,
or pairs of original evaluations on ordinal criteria. The difference of evaluations on a cardinal criterion needs
to be translated into a graded marginal intensity of preference. For any cardinal criterion gi 2 G, we consider a
finite set H i � ðH�i [ f0g [ Hþi Þ of marginal intensity grades such that for every pair of actions (x,y) 2 A · A

exactly one grade h 2 Hi is assigned.

(1) x �h
i y, h 2 Hþi , means that action x is preferred to action y in grade h on criterion gi,

(2) x �h
i y, h 2 H�i , means that action x is not preferred to action y in grade h on criterion gi,

(3) x �0
i y means that action x is similar (asymmetrically indifferent) to action y on criterion gi.

Within the preference context, the similarity relation �0
i , even if not symmetric, resembles indifference rela-

tion. Thus, in this case, we call this similarity relation ‘‘asymmetric indifference’’. Of course, for each cardinal
criterion gi 2 G and for every pair of actions (x,y) 2 A · A, ½9h 2 Hþi : x �h

i y� ) ½ 9= k 2 Hþi : y �k
i x� as well as

[9h 2 H�i : x �h
i y� ) ½ 9= k 2 H�i : y �k

i x�. Observe that the binary relation �0 is reflexive, but neither necessar-
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ily symmetric nor transitive, and �h for h 2 Hn{0} are neither reflexive nor symmetric and not necessarily
transitive. [h 2 H �h is not necessarily complete.

Let us observe that we consider the following natural relation between graded preference relations
�h

i ; h 2 Hi, and criteria gi; i ¼ 1; . . . ; n (coherence principle of graded preference relations): for all
x; y;w; z 2 A and all i ¼ 1; . . . ; n:
½x �h
i y; h 2 Hi; and giðwÞP giðxÞP giðyÞP giðzÞ� ) ½w �k

i z with k 2 H i such that k P h�:

Consequently, PCT can be seen as decision table SPCT = hB,G [ {d}i, where B � A · A is a non-empty set of
pairwise comparisons of reference actions and d is a decision corresponding to the comprehensive pairwise
comparison (comprehensive graded preference relation).

3. Rough approximation of comprehensive graded preference relations specified in PCT

Let GN be the set of cardinal criteria, and GO the set of ordinal criteria, such that GN [ GO = G and
GN \ GO = ;. Moreover, for each P � G, we denote by PN, PO the same partitioning of P, i.e. PO = P \ GO

and PN = P \ GN. In order to define the rough approximations of comprehensive graded preference relations
we need the concept of dominance relation between two pairs of actions with respect to (w.r.t.) a subset of
criteria. This concept is defined below, separately for subsets of cardinal criteria and for subsets of ordinal
criteria. In the case of cardinal criteria, the dominance is built on graded preference relations, and in the case
of ordinal criteria, the dominance is built directly on pairs of evaluations [5].

DRSA aims at separating consistent from inconsistent preference information, so as to express certainly (P-
lower approximation) or possibly only (P-upper approximation) the comprehensive graded preference rela-
tions for a pair of actions in terms of evaluations of these actions on particular criteria from set P.

3.1. Cardinal criteria

Let P = PN � G (P 5 ;). Given (x,y), (w,z) 2 A · A, the pair of actions (x,y) is said to dominate (w,z)
w.r.t. subset of cardinal criteria P (denoted by (x,y)DP(w,z)) if x is preferred to y at least as strongly as w

is preferred to z w.r.t. each gi 2 P. Precisely, ‘‘at least as strongly as’’ means ‘‘to at least the same grade’’,
i.e. for each gi 2 P and k 2 Hi such that w �k

i z, there exists h 2 Hi such that h P k and x �h
i y. Let D{i} be

the dominance relation confined to the single criterion gi 2 P. The binary relation D{i} is a complete preorder
on A · A. Since the intersection of complete preorders is a partial preorder and DP ¼

T
gi2P Dfig, then the dom-

inance relation DP is a partial preorder on A · A. Let R � P � G and (x,y), (u,v) 2 A · A; then the following
implication holds: ðx; yÞDP ðu; vÞ ) ðx; yÞDRðu; vÞ.

Given P � G and (x,y) 2 A · A, we define:
– a set of pairs of actions dominating (x,y), called P-dominating set,
DþP ðx; yÞ ¼ fðw; zÞ 2 A� A : ðw; zÞDP ðx; yÞg;

– a set of pairs of actions dominated by (x,y), called P-dominated set,
D�P ðx; yÞ ¼ fðw; zÞ 2 A� A : ðx; yÞDP ðw; zÞg:

To approximate the comprehensive graded preference relation, we need to introduce the concept of upward

cumulated preference (denoted by �Ph) and downward cumulated preference (denoted by �6h), having the fol-
lowing interpretation:

– x �Ph y means ‘‘x is comprehensively preferred to y by at least grade h’’, i.e. x �Ph y if x �k y, where
h 6 k 2 H,

– x �6h y means ‘‘x is comprehensively preferred to y by at most grade h’’, i.e. x �6h y if x �k y, where
h P k 2 H.
The P-dominating sets and the P-dominated sets defined on B for all pairs of reference actions from B are
‘‘granules of knowledge’’ that can be used to express P-lower and P-upper approximations of cumulated pref-
erence relations �Ph and �6h, denoted by P ð�PhÞ; P ð�PhÞ and Pð�6hÞ; P ð�6hÞ, respectively:
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– for h 2 H,
P ð�PhÞ ¼ fðx; yÞ 2 B : ½DþP ðx; yÞ \ B� � �Phg; P ð�PhÞ ¼
[

ðx;yÞ2�Ph

DþP ðx; yÞ

2
4

3
5 \ B;
– for h 2 H,
P ð�6hÞ ¼ fðx; yÞ 2 B : ½D�P ðx; yÞ \ B� � �6hg; P ð�6hÞ ¼
[

ðx;yÞ2�6h

D�P ðx; yÞ

2
4

3
5 \ B:
For all h 2 H ; P ð�PhÞ � �Ph � P ð�PhÞ and P ð�6hÞ � �6h � P ð�6hÞ. Furthermore, for all h 2 H ; P ð�PhÞ ¼
B� P ð�6hÞ and P ð�6hÞ ¼ B� P ð�PhÞ. From the definition of the P-boundaries (P-doubtful regions) of �Ph

and of �6h for any h 2 H, BnP ð�PhÞ ¼ P ð�PhÞ � P ð�PhÞ and BnP ð�6hÞÞ ¼ P ð�6hÞ � P ð�6hÞ, it follows that
BnP(�Ph) = BnP(�6h) [5].

The concepts of the quality of approximation, reducts and core can be extended also to the approximation
of cumulated preference relations. In particular, the quality of approximation of �Ph and �6h for all h 2 H, by
P � G is characterized by the coefficient
cP ¼ B�
[
h2h

BnP ð�PhÞ
 !�����

�����
,
jBj ¼ B�

[
h 2 h

BnP ð�6hÞ
 !�����

�����
,
jBj;
where |Æ| denotes cardinality of a set. It expresses the ratio of all pairs of actions (x,y) 2 B correctly assigned to
�Ph and to �6h by the set P of criteria, to all the pairs of actions contained in B. Each minimal subset P � G,
such that cP = cC, is a reduct of G (denoted by REDSPCT

). Let us remark that SPCT can have more than one
reduct. The intersection of all B-reducts is the core (denoted by CORESPCT

Þ.
In fact, for induction of decision rules, we consider the variable consistency model on SPCT [11,18] relaxing

the definition of P-lower approximation of the cumulated preference relations �Ph and �6h, for any h 2 H,
such that at most (1�l) · 100% of the pairs in P-dominating or P-dominated sets may not belong to the
approximated cumulated preference relation:
P lð�PhÞ ¼ ðx; yÞ 2 B : DþP ðx; yÞ \ �Ph
�� ��= DþP ðx; yÞ \ B

�� �� P l
� �

;

P lð�6hÞ ¼ ðx; yÞ 2 B : D�P ðx; yÞ \ �6h
�� ��= D�P ðx; yÞ \ B

�� �� P l
� �

;

where l 2(0,1] is the required level of consistency.

3.2. Ordinal criteria

In the case of ordinal criteria, the dominance relation is defined directly on pairs of evaluations gi(x) and
gi(y), for all pairs of actions (x,y) 2 A · A. Let P = PO and PN = ;, then, given ðx; yÞ; ðw; zÞ 2 A� A, the pair
(x,y) is said to dominate the pair (w,z) w.r.t. subset of ordinal criteria P (denoted by (x,y)DP(w,z)) if, for each
gi 2 P, gi(x) P gi(w) and gi(z) P gi(y). Let D{i} be the dominance relation confined to the single criterion
gi 2 PO. The binary relation D{i} is reflexive, transitive, but non-necessarily complete (it is possible that not
(x,y)D{i}(w,z) and not (w,z)D{i}(x,y) for some (x,y), (w,z) 2 A · A). Thus, D{i} is a partial preorder. Since
the intersection of partial preorders is a partial preorder and DP ¼

T
gi2P Dfig; P ¼ P O, then the dominance

relation DP is a partial preorder.

3.3. Cardinal and ordinal criteria

If subset of criteria P � G is composed of both cardinal and ordinal criteria, i.e. if PN 5 ; and PO 5 ;,
then, given (x,y), (w,z) 2 A · A, the pair (x,y) is said to dominate the pair (w,z) w.r.t. subset of criteria P

(denoted by (x,y)DP(w,z)), if (x,y) dominates (w,z) w.r.t. both PN and PO. Since the dominance relation
w.r.t. PN is a partial preorder on A · A and the dominance w.r.t. PO is also a partial preorder on A · A, then
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also the dominance DP, being the intersection of these two dominance relations, is a partial preorder. In con-
sequence, all the concepts related to rough approximations introduced in Section 3.1 can be restored using this
specific definition of dominance relation.
4. Induction of decision rules from rough approximations

Using the rough approximations of relations �Ph and �6h, defined in Section 3, it is then possible to
induce a generalized description of the preference information contained in a given SPCT in terms of decision
rules. The syntax of these rules is based on the concept of upward cumulated preferences w.r.t. criterion gi

(denoted by �Ph
i Þ and downward cumulated preferences w.r.t. criterion gi (denoted by �6h

i Þ, having similar
interpretation and definition as for the comprehensive preference. Let also Gi ¼ fgiðxÞ; x 2 Ag; gi 2 GO, be
a set of different evaluations on ordinal criterion gi. The decision rules induced from SPCT have then the fol-
lowing syntax:

(1) DP-decision rules, which are induced with the hypothesis that all pairs from Pl (�Ph) are positive and all
the others are negative learning examples:
if x �Phði1Þ
i1 y and . . . x �PhðieÞ

ie y and gieþ1ðxÞP rieþ1 and gieþ1ðyÞ 6 sieþ1 and . . . gipðxÞP rip and gipðyÞ
6 sip; then x �Ph y:
(2) D6-decision rules, which are induced with the hypothesis that all pairs from Pl (�6h) are positive and all
the others are negative learning examples:
if x �6hði1Þ
i1 y and . . . x �6hðieÞ

ie y and gieþ1ðxÞ 6 rieþ1 and gieþ1ðyÞP sieþ1 and . . . gipðxÞ 6 rip and gipðyÞ
P sip; then x �6h y;
where P ¼ fgi1; . . . ;gipg � G, P N ¼ fgi1; . . . ;gieg, P O ¼ fgieþ1; . . . ;gipg; ðhði1Þ; . . . ;hðieÞÞ 2 Hi1� 	 	 	 �Hie

and ðrieþ1; . . . ; ripÞ; ðsieþ1; . . . ; sipÞ 2 Gieþ1� 	 	 	 �Gip.

Since we are working with variable consistency approximations, it is enough to consider the lower approx-
imations of the upward and downward cumulated preference relations, namely Pl (�Ph) and Pl (�6h). To
characterize the quality of the rules, we say that a pair of actions supports a decision rule q if it matches both
the condition and decision parts of q. On the other hand, a pair is covered by a decision rule q as soon as it
matches the condition part of q. Let Cover(q) denote the set of all pairs of actions covered by rule q with deci-
sion part ‘‘then x �Ph y’’. Let also remind that �Ph denotes a subset of pairs (w,z) 2 B, such that w �Ph z.
Finally, we can define the confidence level gq (�Ph) of DP-decision rule q as
gqð�PhÞ ¼ jCoverðqÞ \ �Phj
jCoverðqÞj :
For D6-decision rules, the confidence level is defined analogously.
Let us remark that the decision rules are induced from P-lower approximations whose composition is con-

trolled by user-specified consistency level l. It seems reasonable to require that the smallest accepted confidence
of the rule should not be lower than the currently used consistency level l. Indeed, in the worst case, some pairs
of actions from the P-lower approximation may create a rule using all criteria from P thus giving a confidence
gq (�Ph) P l. The user may have a possibility of increasing this lower bound for confidence of the rule but
then decision rules may not cover all pairs of actions from the P-lower approximations. Moreover, we require
that each decision rule is minimal. Since a decision rule is a consequence relation, by a minimal decision rule we
understand such a consequence relation that there is no other consequence relation with a premise of at least
the same weakness and a conclusion of at least the same strength with a not worse confidence gq(�Ph) P l.
The induction of variable-consistency decision rules can be done using the rule induction algorithm for
VC-DRSA, which can be found in [12].
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5. Procedures for exploitation of a graded fuzzy preference structure resulting from application of decision rules

on a new set of actions

The decision rules induced from a given SPCT describe the upward and downward cumulated preference
relations �Ph and �6h with confidence gq (�Ph) P l. After being approved by the DM, a set of decision rules
covering all pairs of SPCT represents a preference model of the DM who made the pairwise comparison of ref-
erence actions.

By application of the decision rules on a new subset M2 = M · M � A · A of pairs of actions, we get for
each pair (u,v) 2M2 a set of different conclusions (possibly empty) in the form of cumulated preference rela-
tions �Ph and �6h, where h 2 H.

5.1. The credibility degree b and its monotonic behavior

For all pairs (u,v) 2M2 we state the credibility degree b of conclusion u �Ph v, such that:
bðu �Pa vÞ ¼ 1 and bðu�PhvÞ ¼ maxfgqð�PkÞ : q 2 RPðu; v; hÞg for all h 2 H � fag;
where RP(u,v,h) is the set of DP-rules q matching (u,v) and concluding x �Pk y with k 2 H, such that k P h.
The reason for stating b(u �Pa v) = 1 is that it is certain that u is preferred to v to at least grade a which is the
worst possible grade of preference. In some sense, the conclusion u �Pa v is a default one. This conclusion is
always true and, therefore, it conveys no information.

Analogously, for all pairs (u,v) 2M2 we state the credibility b of u �6h v:
bðu�6xvÞ ¼ 1 and bðu�6hvÞ ¼ maxfgqð�6kÞ : q 2 R6ðu; v; hÞg for all h 2 H � fxg;
where R6(u,v,h) is the set of D6-rule q matching (u,v) and having as conclusion ‘‘then x �6k y’’ with k 2 H,
such that k 6 h. The reason for stating b(u �6x v) = 1 is that it is certain that u is preferred to v to at most
grade x which is the best possible grade of preference. Again, u �6x v is a default conclusion.

The following lemma stems from the definition of b(u �6h v) and b(u �Ph v); it expresses the monotonic
behavior of the credibility degrees with respect to grade h.

Lemma 1. For all h1,h2 2 H and for all (u,v) 2M2, the following monotonicity holds:
ðaÞ h1 P h2 ) bðu �Ph1 vÞ 6 bðu �Ph2 vÞ;
ðbÞ h1 P h2 ) bðu �6h1 vÞP bðu �6h2 vÞ:
Proof. If q 2 RPðu; v; h1Þ, then the conclusion of q is ‘‘then x �Pk y’’ with k 2 H, such that k P h1 and, for
hypothesis, h1 P h2. Thus, q 2 RPðu; v; h2Þ because k P h2. Therefore, we have that h1 P h2 )
RPðu; v; h1Þ � RPðu; v; h2Þ, and finally,
bðu�Ph1 vÞ ¼ maxfgqð�PkÞ : q 2 RPðu; v; h1Þg 6 maxfgqð�PkÞ : q 2 RPðu; v; h2Þg ¼ bðu�Ph2 vÞ:
(b) can be proved analogously. h

Fig. 1 shows an example of the shapes of b(u �6h v) and b(u �Ph v). The monotonicity of b(u �Ph v) with
respect to h says that preference u�Ph1 v is not less credible than preference u�Ph2 v, whenever h1 6 h2. Anal-
ogous observation holds for u�6h1 v and for u�6h2 v, as soon as h1 P h2.

For exploitation procedures, the monotonic behavior of the credibility degrees b(u �6h v) and b(u �Ph v)
with respect to the dominance relation DG is particularly important. It is proved in the following lemma.

Lemma 2. For all ðu; vÞ; ðw; zÞ 2 M , the following implication holds:
ðu; vÞDGðw; zÞ
+

for all h 2 H ; bðu�PhvÞP bðw�PhzÞ and bðu�6hvÞ 6 bðw�6hzÞ:



Fig. 1. Example of credibility degrees with respect to h.
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Proof. For a given h 2 H, let us consider the following DP-decision rule q with k P h,
if x �Phði1Þ
i1 y and . . . x �PhðieÞ

ie y and gieþ1ðxÞP rieþ1 and gieþ1ðyÞ 6 sieþ1 and . . . gipðxÞP rip

and gipðyÞ 6 sip; then x�Pky:
If the pair (w,z) matches q, then
w �Phði1Þ
i1 z and . . . w �PhðieÞ

ie z and gieþ1ðwÞP rieþ1 and gieþ1ðzÞ 6 sieþ1 and . . . gipðwÞP rip

and gipðzÞ 6 sip
and, therefore, the rule q suggests that w �Pk z.
As (u,v)DG(w,z), it is also true that
u�Phði1Þ
i1 v and . . . u �PhðieÞ

ie v and gieþ1ðuÞP rieþ1 and gieþ1ðvÞ 6 sieþ1 and . . . gipðuÞP rip and gipðvÞ 6 sip
and, therefore, the rule q suggests again that u �Pk v.
This means that if (u,v)DG(w,z) and (w,z) matches a DP-decision rule q, then also (u,v) matches the same

decision rule q, whatever h 2 H and k P h. Thus, for all h 2 H, RPðw; z; hÞ � RPðu; v; hÞ and, consequently,
bðu�PhvÞ ¼ maxfgqð�PkÞ : q 2 RPðu; v; hÞgP maxfgqð�PkÞ : q 2 RPðw; z; hÞg ¼ bðw�PhzÞ
Thus, we proved that
ðu; vÞDGðw; zÞ ) ½for all h 2 H ; bðu�PhvÞP bðw�PhzÞ�:

An analogous proof holds for
ðu; vÞDGðw; zÞ ) ½for all h 2 H ; bðu�6hvÞ 6 bð�6hzÞ�: �
The following lemma proves the monotonic behavior of the credibility degrees with respect to the criteria
evaluations.

Lemma 3. For all u, v 2M, the following implication holds:
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n�
+

for all h 2 H ; for all z 2 M ;

bðu�PhzÞP bðv�PhzÞ and bðu�6hzÞ 6 bðv�6hzÞ
bðz�PhuÞ 6 bðz�PhvÞ and bðz�6huÞP bðz�6hvÞ

� �
:

Proof. For all u,v, z 2M, by definition of the dominance relation and the coherence principle of graded pref-
erence relation,
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) ½ðu; zÞDGðv; zÞ and ðz; vÞDGðz; uÞ�;
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since gi(z) P gi(z) for all i ¼ 1; . . . ; n. From Lemma 2,
ðu; zÞDGðv; zÞ ) ½for all h 2 H ; bðu�PhzÞP bðv�PhzÞ and bðu�6hzÞ 6 bðv�6hzÞ�

and
ðz; vÞDGðz; uÞ ) ½for all h 2 H ; bðz�PhvÞP bðz�PhuÞ and bðz�6hvÞ 6 bðz�6huÞ�: �
For each h 2 H, �Ph and �6h are fuzzy preference relations in M. They may be represented by a pair of
fuzzy preference graphs.

In order to obtain a final recommendation in terms of choice or ranking, we have to exploit the pair of sets
of fuzzy preference relations (BP,B6), defined as
BP ¼ fbPh; h 2 Hg;B6 ¼ fb6h; h 2 Hg;

where, for all h 2 H ; bPh : M2 ! ½0; 1� and b6h : M2 ! ½0; 1�, such that for all ðu; vÞ 2 M2; bPhðu; vÞ ¼
bðu�PhvÞ and b6hðu; vÞ ¼ bðu�6hvÞ.

Using fuzzy preference relations (BP,B6), a comprehensive score on M is a function S : M! R such that
for all x 2M
SðxÞ ¼ K½bðx�PhzÞ; bðz�PhxÞ; bðx�6hzÞ; bðz�6hxÞ; z 2 M � fxg; h 2 H �;

with K : ½0; 1�4�ðjM j�1Þ�jH j ! R being a function non-decreasing with values b(x �Ph z) and b(z �6h x), and
non-increasing with values b(z �Ph x) and b(x �6h z), z 2M � {x}, h 2 H. Of course, the greater S(x), the
more preferable is action x 2M.

Let us observe that it is also possible to define a comprehensive score relative to each grade h 2 H+ [ {0} on
M, as a function Sh :M! R, such that for all x 2M,
ShðxÞ ¼ Kh½bðx�PhzÞ; bðz�PhxÞ; bðx�6�hzÞ; bðz�6�hxÞ; z 2 M � fxg�
with Kh : ½0; 1�4�ðjM j�1Þ ! R being a function non-decreasing with values b(x �Ph z) and b(z �6�h x), and non-
increasing with values b(z �Ph x) and b(x �6�h z), z 2M � {x}.

Taking into account the monotonic properties of fuzzy relations BP and B6 presented in Lemma 3, the
following interesting result can be stated.

Theorem. For all u, v 2M,

(a) ½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) SðuÞP SðvÞ,
(b) ½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) ½ShðuÞP ShðvÞ; h 2 Hþ [ f0g�.
Proof. From Lemma 3 and the monotonicity property of function K, we get, for all u, v 2M,
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n�
+

SðuÞ ¼ K½bðu�PhzÞ; bðz�PhuÞ; bðu�6hzÞ; bðz�6huÞ; z 2 M � fug; h 2 H �
P K½bðv�PhzÞ; bðz�PhvÞ; bðv�6hzÞ; bðz�6hvÞ; z 2 M � fvg; h 2 H � ¼ SðvÞ
and thus we proved point (a). Point (b) can be proved analogously. h

Giving specific definitions to comprehensive score S, as well as comprehensive score Sh for a given
h 2 H+ [ {0}, several exploitation procedures can be proposed. In this paper, we propose two families of
exploitation procedures: the weighted-fuzzy net flow score, the lexicographic-fuzzy net flow score.

5.2. The weighted-fuzzy net flow score

The weighted-fuzzy net flow score properly extends the net flow score procedure characterized in [1,2] for
the basic case of a valued preference relation, and in [13] for the case of two grades of preference: ‘‘outran-
king’’ and ‘‘non-outranking’’.
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Because of multiple grades of intensity of preference and two ways of cumulating these grades (‘‘at least’’
grade h and ‘‘at most’’ grade h), we ask the DM to introduce two sets of weights wP

h P 0 and w6h P 0, h 2 H,
such that wP

a ¼ 0 and w6x ¼ 0. The weights wP
a and w6x get zero value because they correspond to default con-

clusions, not conveying any useful information.
On the basis of weights wP

h and w6h , h 2 H, a comprehensive preference strength of x over y can be calculated
for each pair (x,y) 2M2, as
P ðx; yÞ ¼
X
h2h

wP
h bðx�PhyÞ �

X
h2h

w6h bðx�6hyÞ:
The following corollary concerns monotonicity of comprehensive preference strength P(x,y) with respect to
dominance relation DG, whatever are the values of the weights.

Corollary 1. For all u, v, z 2M,
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) ½P ðu; zÞP P ðv; zÞ and Pðz; uÞ 6 P ðz; vÞ�:
Proof. From Lemma 3 and the definition of comprehensive preference strength P(x,y), we get
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) P ðu; zÞ ¼
X
h2h

wP
h bðu�PhzÞ �

X
h2h

w6h bðu�6hzÞ

P
X
h2h

wP
h bðv�PhzÞ �

X
h2h

w6h bðv�6hzÞ ¼ P ðv; zÞ:
Analogously, we get
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) P ðz; uÞ ¼
X
h2h

wP
h bðz�PhuÞ �

X
h2h

w6h bðz�6huÞ

6

X
h2h

wP
h bðz�PhvÞ �

X
h2h

w6h bðz�6hvÞ ¼ P ðz; vÞ
and this is what we had to prove. h

Let us remark that the weights wP
h and w6h permit tradeoffs between credibility degrees b of fuzzy preference

relations relative to different grades, �Ph and �6h, respectively. For example, if �P0.5 means ‘‘at least mildly

preferred’’ and �P0.25 means ‘‘at least weakly preferred’’, and, moreover, the DM has specified wP
0:5 ¼ 3 and

wP
0:25 ¼ 1, then the tradeoff means that, from the viewpoint of the comprehensive preference strength P(x,y),

the decrease of 1% in the credibility of the conclusion that x is ‘‘at least mildly preferred’’ to y can be compen-
sated by the increase of 3% in the credibility of the conclusion that x is ‘‘at least weakly preferred’’ to y.

We compared preferences cumulated from different grades (‘‘mild preference’’ and ‘‘weak preference’’) but
in the same direction (‘‘at least’’). Remark that if the directions were opposite, then even if the grades were the
same, it would be justified to distinguish the weights corresponding to different directions, e.g. wP

0:25 ¼ 1 and
w60:25 ¼ 3, which would mean that the decrease of 1% in the credibility of the conclusion that x is ‘‘at least

weakly preferred’’ to y can be compensated by the increase of 3% in the credibility of the conclusion that x

is ‘‘at most weakly preferred’’ to y. Moreover, if the values of the weights corresponding to different grades
and directions, say �P0.5 and �60.25, would be wP

0:5 ¼ 3 and w60:25 ¼ 3, this would mean that the decrease of
1% in the credibility of the conclusion that x is ‘‘at least mildly preferred’’ to y can be compensated by the
increase of 1% in the credibility of the conclusion that x is ‘‘at most weakly preferred’’ to y.

Among infinitely many ways of fixing weights wP
h P 0 and w6h P 0, h 2 H, there are the following four

main perspectives.

(a) A cautious (or pessimistic) perspective, in which the weights assigned to weak conclusions are greater
than the ones for strong conclusions. More precisely, the cautious perspective means that the compre-
hensive preference strength P(x,y) is mainly based on credibility of preferences with relatively small
degree h in relation �Ph, or large degree h in relation �6h, i.e. for all h 2 H � fag;wP

h 6 wP
h�1, and

for all h 2 H � fxg;w6h 6 w6hþ1.
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(b) A risky (or optimistic) perspective, in which the weights assigned to strong conclusions are greater than
the ones for weak conclusions. This perspective means that P(x,y) relies mainly on the credibility of opti-
mistic preferences, i.e. with relatively large degree h in relation �Ph, or small degree h in relation �6h.
Therefore, for all h 2 H � fag;wP

h P wP
h�1, and for all h 2 H � fxg;w6h P w6hþ1.

(c) A positive perspective, in which the positive conclusions prevail on the negative ones. In other words, this
perspective means that the comprehensive preference strength P(x,y) is more based on credibility of pref-
erences �Ph than on credibility of preferences �6h. Thus, for all h 2 H � fa;xg;wP

h P w6h .
(d) A negative perspective, in which the negative conclusions get stronger weights than the positive ones. This

means that P(x,y) gives greater credit to credibility of preferences �6h than to �Ph. A DM with a neg-
ative perspective will choose the weights such that for all h 2 H � fa;xg;wP

h 6 w6h .

On the basis of the comprehensive preference strength P(x,y), we define the following weighted-fuzzy net
flow score for every x 2M:
SNFðxÞ ¼
X

z2M�fxg
P ðx; zÞ �

X
z2M�fxg

P ðz; xÞ

¼
X
h2H

z2M�fxg

wP
h ½bðx�PhzÞ � bðz�PhxÞ� �

X
h2H

z2M�fxg

w6h ½bðx�6hzÞ � bðz�6hxÞ�:
Let us observe that the weighted-fuzzy net flow score is a particular case of the comprehensive score S(x),
enjoying a non-decreasing behavior with respect to b(x �Ph z) and b(z �6h x) and a non-increasing one with
respect to b(z �Ph x) and b(x �6h z). Therefore, on the basis of the previous Theorem, we can immediately
state that the weighted-fuzzy net flow score is monotonic with respect to evaluations on criteria gi 2 G, i.e.
it is concordant with the dominance (or Pareto) principle.

From the weighted-fuzzy net flow score, as well as from any comprehensive score S(x), one can build a
complete preorder D on M as follows: for all u,v 2M
SðuÞP SðvÞ () u D v:
The following corollary stemming out from the Theorem states that the weighted-fuzzy net flow score proce-
dure is consistent with the dominance principle.

Corollary 2. For all u, v 2M,
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) u D v:
The final recommendation in ranking problems consists of the total preorder D, while in choice problems, it
consists of the maximal action(s) of D.
5.3. The lexicographic-fuzzy net flow score

An alternative exploitation procedure can be proposed. It consists in the computation of the fuzzy net flow
score Sh

nfðxÞ for each grade h 2 H+ [ {0}:
Sh
nfðxÞ ¼ Sh

þþðxÞ � Sh
þ�ðxÞ þ Sh

�þðxÞ � Sh
��ðxÞ;
where
Sh
þþðxÞ ¼

X
z2M�fxg

bðx�PhzÞ; Sh
þ�ðxÞ ¼

X
z2M�fxg

bðz�PhxÞ;

Sh
�þðxÞ ¼

X
z2M�fxg

bðz�6�hxÞ; Sh
��ðxÞ ¼

X
z2M�fxg

bðx�6�hzÞ:
This builds up a complete preorder Dh for each h 2 H+ [ {0}, such that
u Dh v() Sh
nfðuÞP Sh

nfðvÞ:
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Let us observe that the fuzzy net flow score Sh
nfðxÞ is a particular case of comprehensive score Sh(x) relative to

h 2 H+ [ {0}, enjoying a non-decreasing behavior with respect to b(x �Ph z) and b(z �6h x), and a non-
increasing one with respect to b(z �Ph x) and b(x �6h z).

To propose a final recommendation on the basis of the whole set of preorders Dh for h 2 H+ [ {0}, we pro-
pose to aggregate these preorders into the following two final rankings, denoted by DLM – called leximax –
and Dlm – called leximin.

To build the leximax final ranking, we use the following lexicographic approach:
u .LM v() 9h 2 Hþ [ f0g :
8k 2 Hþ [ f0g such that k > h; u Dk v and v Dk u;

while u Dh v and not v Dh u

(

u�LMv() 8h 2 Hþ [ f0g : u Dh v and v Dh u;
where xLM is the asymmetric part of DLM and �LM is the symmetric part of DLM.
To build the leximin final ranking we use the following lexicographic approach:
u .lm v() 9h 2 Hþ [ f0g :
8k 2 Hþ [ f0g such that k < h; u Dk v and v Dk; u

while u Dh v and not v Dh u

(

u �lm v() 8h 2 Hþ [ f0g : u Dh v and vDh u
where xlm is the asymmetric part of Dlm and �lm is the symmetric part of Dlm.
Both leximax ranking and leximin ranking consider the set of preorders Dh for h 2 H+ as providing con-

sistent hierarchical information on the comprehensive graded preference relation. The difference between lex-
imax ranking and leximin ranking is the following. Leximax ranking gives priority to preorders Dh with high
values of grade h and indeed, the preorders with lower values of h are only called to break ties from high h-
grade preorders. On the contrary, leximin ranking gives priority to preorders Dh with low values of grade h

and, in turn, the preorders with higher values of h are only called to break ties from low h-grade preorders.
Analogously to the distinction between a risky perspective and a cautious one for the weighted-fuzzy net

flow score, we can say that the leximax-fuzzy net flow score procedure corresponds to a risky (or optimistic)
viewpoint, while the leximin-fuzzy net flow score procedure corresponds to a cautious (or pessimistic)
viewpoint.

The final recommendation given by these procedures in ranking problems consists of the total preorder
D

LM or Dlm; in choice problems, it consists of the maximal action(s) of DLM or Dlm.
Let us remark that one interesting feature of the leximax-fuzzy net flow score procedure and the leximin-

fuzzy net flow score procedure is that they do not require any weight wP
h and w6h ; h 2 H . Indeed, this is an

advantage because the definition of such weights is always arbitrary to some extent.
The following corollary proves that both lexicographic procedures are monotonic with respect to the eval-

uations on criteria from G and, therefore, their results are consistent with the dominance principle.

Corollary 3. For all u, v 2M,
½giðuÞP giðvÞ for all i ¼ 1; . . . ; n� ) ½u DLM v and u Dlm v�:
Proof. Let us suppose that for all i ¼ 1; . . . ; n; giðuÞP giðvÞ. From the Theorem and because of the monotonic
behavior of the aggregation Sh

nfðxÞ, we have, for all h 2 H+ [ {0},
Sh
nfðuÞP Sh

nfðvÞ:

This means that u Dh v for each grade h 2 H+ [ {0}. Two cases are possible:

(a) Sh
nfðuÞ ¼ Sh

nfðvÞ for each grade h 2 H+ [ {0}. This means u Dh v and v Dh u, for all grades. Thus, u � LMv

and u � lmv.
(b) there exists at least one grade h 2 H+ [ {0} such that u Dh v and not v Dh u. This situation can be

described in two equivalent ways:
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(b1) there exists at least one grade h 2 H+ [ {0} such that for all k > h, u Dk v and v Dk u, while u Dh v

and not v Dh u and, therefore, u x LMv;

(b2) there exists at least one grade h 2 H+ [ {0} such that for all k < h, u Dk v and v Dk u, while u Dh v

and not v Dh u and, therefore, u x lmv.

In both cases (a) and (b), we have u DLM v and u Dlm v. This concludes the proof. h
6. Illustrative example

Let us consider a hypothetical case of a Belgian citizen wishing to buy a house in Poland for spending his
holidays there. The selling agent approached by the customer wants to rank all the available houses to present
them in a relevant order to the customer. Thereby, the latter is proposed first to have a look at a short list of
seven houses (the reference actions), characterized by three criteria that seem important to the customer: (1)
distance to the nearest airport, (2) price, and (3) comfort (Table 1). While the two first criteria are cardinal
(expressed in km and in €, respectively), the last one is represented on a three-level ordinal scale (Basic, Med-

ium, Good). The customer is then asked to give – even partially – his preferences on the set of seven proposed
houses, in terms of a comprehensive graded preference relation.

The customer gives his preferences by means of the graph presented in Fig. 2, where a thin arc represents a
weak preference, and a bold arc, a strong preference. Thereby, this is a comprehensive graded preference rela-
tion, with 2 positive grades of preference: weak and strong. One may observe that the customer’s preferences
are allowed to be both not complete (there may exist pairs of houses without an arc; e.g., 5 and 4) and not
always transitive (e.g., 6 is preferred to 4 and 4 is preferred to 3, with no preference between 6 and 3).

In order to build the PCT, differences of evaluations on cardinal criteria have been encoded in marginal
graded preference relations ð�h

i Þ, with H i ¼ f�1;�0:5; 0; 0:5; 1g; i ¼ 1; 2. While comparing two alternatives,
x and y, a difference in Distance criterion smaller (in absolute value) than 3 km is considered as non significant
ðx �0

1 y and y �0
1 xÞ. If the difference of distance is between 4 and 10 km in favor of x, then one weakly prefers
Table 1
Short list of the houses (reference actions)

Location of the house Distance to the nearest airport (A1: [km]) Price (A2: [€]) Comfort (A3: [qualitative])

0: Poznań 3 60 Good
1: Kapalica 35 30 Good
2: Kraków 7 85 Medium
3: Warszawa 10 90 Basic
4: Wrocław 5 60 Medium
5: Malbork 50 50 Medium
6: Gdańsk 5 70 Medium

0

1 2

5

6 4

3

Fig. 2. Graph representation of the comprehensive graded preference relation in the set of reference actions.



Table 2
The PCT corresponding to customer’s preferences on the set of reference actions

Pairs of reference actions (x,y) h on A1: x �h
1 y h on A2: x �h

2 y Evaluations of (x;y) on A3 h on comprehensive
preference relation: �h

(0,0) 0 0 (Good; Good) 0
(0,1) 1 �0.5 (Good; Good) 0.5
(0,2) 0.5 0.5 (Good; Medium) 0.5
(0,3) 0.5 0.5 (Good; Basic) 1
(0,5) 1 0 (Good; Medium) 1
(0,6) 0 0 (Good; Medium) 0.5
(1,0) �1 0.5 (Good; Good) �0.5
(1,1) 0 0 (Good; Good) 0
(1,2) �1 1 (Good; Medium) 0.5
(1,3) �1 1 (Good; Basic) 1
(1,5) 1 0.5 (Good; Medium) 1
(2,0) �0.5 �0.5 (Medium; Good) �0.5
(2,1) 1 �1 (Medium; Good) �0.5
(2,2) 0 0 (Medium; Medium) 0
(2,3) 0 0 (Medium; Basic) 1
(3,0) �0.5 �0.5 (Basic; Good) �1
(3,1) 1 �1 (Basic; Good) �1
(32) 0 0 (Basic; Medium) �1
(3,3) 0 0 (Basic; Basic) 0
(3,4) �0.5 �0.5 (Basic; Medium) �1
(4,3) 0.5 0.5 (Medium; Basic) 1
(4,4) 0 0 (Medium; Medium) 0
(4,6) 0 0 (Medium; Medium) �0.5
(5,0) �1 0 (Medium; Good) �1
(5,1) �1 �0.5 (Medium; Good) �1
(5,5) 0 0 (Medium; Medium) 0
(5,6) �1 0.5 (Medium; Medium) �0.5
(6,0) 0 0 (Medium; Good) �0.5
(6,4) 0 0 (Medium; Medium) 0.5
(6,5) 1 �0.5 (Medium; Medium) 0.5
(6,6) 0 0 (Medium; Medium) 0
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x to yðx �0:5
1 yÞ; finally, the preference is strong as soon as the difference is strictly greater than 10 km ðx �1

1 yÞ.
As far as the Price criterion is concerned, an absolute difference smaller than 10 leads to indifference ðx �0

2 y
and y �0

2 xÞ, and the weak (resp. strong) preference appears as soon as the difference is strictly greater than 10
(resp. 30). For the sake of simplicity, we have assumed in this example that the marginal graded preference
relations are symmetric, e.g. x �0:5

i y () y ��0:5
i x. As the comfort criterion is ordinal, we have to take into

account the pair of evaluations on this criterion instead of their difference. The pairwise comparison table
(PCT) resulting from the above preference information is shown in Table 2.

The following 19 rules have been induced using the variable-consistency rule inducer [18], with a minimal
consistency level l = 0.85 (within parentheses there are two numbers telling how many pairs are covered and
how many pairs are supporting the corresponding rule, respectively; this allows to compute the confidence
Table 3
The set of new houses and their ranks in the final ranking

Location of
the house

Distance to the nearest airport
(A1: [km])

Price
(A2: [€])

Comfort
(A3: [qualitative])

Weighted fuzzy
net flow score

Final
rank

00: Kórnik 50 40 Medium �0.1151 2
10: Rogalin 15 50 Basic �5.4375 4
20: Lublin 8 60 Good 7.1971 1
30: Toruń 100 50 Medium �1.6445 3
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level). Moreover, to be concise in expression of rules, in the case of ordinal criterion A3, we are coding the
comfort levels by 0=Basic, 1 = Medium, 2 = Good, and we are expressing the elementary conditions like
(x;y) P 3(2;1) or (x;y) 6 3(1;0), which means that on criterion A3 ‘‘x is at least Good and y is at most Medium’’
or ‘‘x is at most Medium and y is at least Basic’’, respectively:
if x�P1
1 y and ðx; yÞP3ð2; 1Þ; then x �P1 y;
Table 4
The set of new houses and their ranks in the final ranking

Location of the
house

Fuzzy net flow score
(h = 0)

Fuzzy net flow score
(h = .5)

Fuzzy net flow score
(h = 1)

Leximax final rank
(DLM)

Leximin fi
(Dlm)

0 0: Kórnik �0.882 0 0 2 2
1 0: Rogalin �1 �2 �6 4 3
2 0: Lublin 3 6 6 1 1
3 0: Toruń �1.118 �4 0 3 4
(2;2)

if ðx; yÞP3ð1; 0Þ; then x �P1 y
 (4;4)

if g3ðyÞP 1; then x �60:5 y
 (26;24)

if g3ðyÞP 2; then x �60:5 y
 (11;11)

if ðx; yÞ63ð1; 1Þ; then x �60:5 y
 (17;17)

if x �P1

1 y and x �P�0:5
2 y; then x �P0:5 y
 (4;4)
if ðx; yÞP3ð2; 1Þ; then x �P0:5 y
 (7;7)

if ðx; yÞ63ð1; 1Þ; then x �60 y
 (17;15)

if g3ðyÞP 2; then x �60 y
 (11;10)

if g3ðxÞ 6 0; then x �60 y
 (5;5)

if ðx; yÞP3ð1; 1Þ; then x �P0 y
 (17;15)

if g3ðxÞP 2; then x �P0 y
 (11;10)

if g3ðyÞ 6 0; then x �P0 y
 (5;5)

if x �6�1

1 y and x �60:5
2 y; then x �6�0:5 y
 (4;4)
if ðx; yÞ63ð1; 2Þ; then x �6�0:5 y
 (7;7)

if g3ðxÞP 1; then x �P�0:5 y
 (26;24)

if ðx; yÞP3ð1; 1Þ; then x �P�0:5 y
 (17;17)

if x �6�1

1 y and ðx; yÞ63ð1; 2Þ; then x �6�1 y;
 (2;2)

if ðx; yÞ63ð0; 1Þ; then x �6�1 y;
 (4;4)
Suppose that the selling agent has found four other houses, presented in Table 3, and would like to see how
these houses will be ranked by the customer. He may use to this end the preference model of the customer in
form of the above decision rules on the set of new houses. According to the Weighted-Fuzzy Net Flow Score
exploitation procedure presented in Section 5, application of the rules on all possible pairs of the new houses
results in fuzzy relations. Then, a weighted-fuzzy net flow score is computed, using the weights:
wP
�1 ¼ 0 wP

�:5 ¼ 1=8 wP
0 ¼ 1=4 wP

:5 ¼ 1=2 wP
1 ¼ 1;

w61 ¼ 0 w6:5 ¼ 1=16 w60 ¼ 1=8 w6�:5 ¼ 1=4 w6�1 ¼ 1=2:
Since for all h 2 H � fag;wP
h 6 wP

h�1, and for all h 2 H � fxg;w6h 6 w6hþ1, we can conclude that the adopted
perspective in weighting fuzzy relations b(x �Ph y) and b(x �6h y) is risky (optimistic). Moreover, since for all
h 2 H � fa;xg; wP

h P w6h , we observe that the weighting perspective is also positive.
Application of the alternative leximax-fuzzy net flow score and leximin-fuzzy net flow score exploitation

procedures leads to complete preorder Dh in the set of new houses obtained by the (unweighted) fuzzy net flow
score procedure on each grade h 2 f0; 0:5; 1g. The leximax-fuzzy net flow score procedure is mainly based on
the fuzzy net flow score for h = 1 and the corresponding complete preorder D1. They are shown in Table 4. In
fact, since one pair of actions (x,y) have the same fuzzy net flow score at grade h = 1, the next grade has to be
investigated in order to break the tie and define the final ranking DLM of the new houses. The leximin-fuzzy
nal rank
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net flow score procedure is mainly based on the fuzzy net flow score for h = 0 and the corresponding complete
preorder D0. It defines the final ranking of the new houses Dlm, which is also shown in Table 4.

In both cases, the Dominance-based Rough Set Approach gives a quite clear recommendation:

• for the choice problem, it suggests to select house 2 0 having the highest score,
• for the ranking problem, it suggests the ranking presented in the last column of Table 3 and in the last but

one of Table 4, i.e.
ð20Þ ! ð00Þ ! ð30Þ ! ð10Þ
or in the last column of Table 4, i.e.
ð20Þ ! ð00Þ ! ð10Þ ! ð30Þ:
Let us remark that the only difference due to various types of exploitation procedures is related to actions (1 0)
and (3 0). It is maybe not surprising that, in this example, the leximax-fuzzy net flow score procedure and the
weighted-fuzzy net flow score procedure provide concordant results, because leximax corresponds to an opti-
mistic attitude and the weights were also chosen according to the same attitude, while leximin corresponds to a
pessimistic attitude.
7. Summary and conclusions

The presented methodology of multicriteria choice and ranking starts from acquisition of preference infor-
mation, then it goes through analysis of this information using the dominance-based rough set approach
(DRSA), followed by induction of decision rules from rough approximations of preference relations, and it
ends with a recommendation of the best action in a set, or of a ranking of given actions.

The preference information is given by the DM in form of pairwise comparisons (or ranking) of some ref-
erence actions – comparison means specification of a grade of comprehensive preference of one reference
action over another. The rough approximations of comprehensive graded preference relations prepare the
ground for induction of decision rules with a warranted confidence. Upon acceptance of the DM, the set
of decision rules constitutes the preference model of the DM, compatible with the pairwise comparisons of
reference actions. It may then be used on a new set of actions, giving cumulated preference relations of ‘‘at
least’’ grade h(�Ph) and ‘‘at most’’ grade h (�6h), h 2 H, with a corresponding credibility degree for each rela-
tion. Exploitation of these relations with a suitable procedure, such as the weighted-fuzzy net flow score pro-
cedure and the lexicographic-fuzzy net flow score procedure (and its two variants, the leximax and the leximin)
proposed in this paper, leads to a complete preorder D which is the recommended final ranking; the action(s)
from the top of the ranking are the recommended best action(s).

From mathematical point of view, our proposal consists in extending a partial order of reference actions
from A 0 � A to an order of actions from A, while satisfying some consistency conditions.

Let us remark that the most interesting features of the proposed methodology are the following:

– the DM gives a preference information in very simple terms by means of a set of decision examples;
– the methodology is intelligible because each decision rule can be justified by decision examples supporting

it.

We also proved that the credibilities of fuzzy preference relations b(x �Ph y) and b(x �6h y) satisfy an
important property of monotonicity with respect to evaluations of actions (dominance principle) and that this
monotonicity is maintained in the exploitation procedures satisfying some minimal conditions of monotonic-
ity with respect to fuzzy preference relations b(x �Ph y) and b(x �6h y). More precisely, we proved that the
weighted-fuzzy net flow score procedure, the leximax-fuzzy net flow score procedure and the leximin-fuzzy
net flow score procedure are monotonic with respect to dominance relation, which is a fundamental property
within multiple criteria decision analysis.
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graded preference relations, in: S. Tsumoto, R. Słowiński, J. Komorowski, J.W. Grzymała-Busse (Eds.), Rough Sets and Current
Trends in Computing, LNAI, vol. 3066, Springer, Berlin, 2004, pp. 508–516.
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